
Memory Log
Watch for changes

Tue, Oct 15, 2002

While debugging front end software, it is often interesting to watch memory via the Memory
Dump page application. This note considers an idea of a local application that can be used to
monitor changes in memory and log them.

The basic idea is to watch for a region of memory to change, and whenever it does, log the
changed value and include the time-of-day the change was detected.

First, assume that only a 1-byte, 2-byte, or 4-byte region need be monitored for changes.

Parameter layout
ENABLE B Enable Bit#
ID/SIZE ID, Size of data monitored: 1,2,4
ADDR1 HI Memory address #1
ADDR1 LO
ADDR2 HI Memory address #2
ADDR2 LO
ADDR3 HI Memory address #3
ADDR3 LO
ADDR4 HI Memory address #4
ADDR4 LO

Any memory address can be entered, but address 0x00000000 is invalid. If the contents of
any of the specified addresses changes value, a record is written to a log. As is typical, let the
log be a data stream. The name used could be MEMLOGxx, where xx is specified as the hex ascii
value of the ID parameter. This allows for more than one such instance of MLOG. The record
format can be:

ID_Size 2 ID (hi byte) and size (lo byte)
Addr# 2 Specifies which address parameter, range 1–4
value 4 New data value, from 1–4 bytes, depending on SIZE parameter
time 8 Usual BCD time-of-day

Alternatives might allow specifying an LA name (4-characters) plus an offset. This would
mean fewer addresses could be specified, but 4 addresses may be overkill.

Another alternative may be to expand the byte that indicates the size of what is to be
monitored in order to permit monitoring a bit within a byte. To this end, use values such as
0xb0, where b is the bit# in the range 0–7. The address would point to the byte containing the
bit to be monitored for changes. The only values logged in this case would be 0 or 1. The
other three possibilities for this byte are entered as 0x01, 0x02, and 0x04, specifying a byte, a
16-bit word, or a 32-bit long word.

One could compare this with alarm logging. To monitor a 2-byte value, for example, one
could add an entry to the Data Access Table to copy the value to a channel, then enable alarm
scanning with a zero tolerance. But if one is monitoring a counter, say, one would also have
to alter the nominal value every time it changed. Also, there is more hassle to change the
Data Access Table and enter a new analog descriptor. In addition, it increases the alarm
message clutter. This new scheme is much more informal.

